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It has long been an axiom of mine that the little things  
are infinitely the most important

—Sherlock Holmes in A Case of Identity  
by Sir Arthur Conan Doyle.



This book is dedicated to our wives: Samia, Miriam,  
and Janice.
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It is fitting to now have a book dedicated entirely to the role of the microbi-
ome in our rheumatic diseases. After all, the study of the infectious origins of 
rheumatoid arthritis alone is an exercise in exploration of the modern besti-
ary. From 30,000 feet I would like to draw attention to observations that may 
help to open our minds on this topic before entering this valuable new addi-
tion to the literature which bridges the fields of rheumatic and immunologic 
diseases and microbiology.

First, while I am genuinely excited at the exploration of the interface of 
rheumatic disease etiology, pathogenesis, and natural history and the human 
microbiome, I am more basically left in wonder by how our microbiome 
shapes our relationships not just with diseases but with our sum total of expe-
riences with the natural world. Recognize that we are not humans at all but 
exist as superorganisms or holobionts who have been imprinted with a 
remarkable spectrum of microbial entities whose own interests may not coin-
cide with ours at any given time. Furthermore and even more remarkable is 
that our DNA is about 8–10% of viral origin (i.e., endogenous retroviral ele-
ments) that has created a host-parasite co-evolutionary dynamic affecting 
everything from our integrated host defenses to our behavior. Based on this 
remarkable fact alone it is imperative that we increasingly dedicate our pre-
cious resources to furthering our understanding of these relationships and 
how they contribute to enhancing health and causing disease.

Second, I would like to remind us that the study of the microbiome and its 
relationship to health and diseases is a long road and that reductionist aspira-
tions to find a microbial culprit that causes a given disease or to therapeuti-
cally manipulate the microbiome through microbial supplements or dietary 
change are likely to be unrewarding, at least for now. Study of the microbi-
ome in many ways, including the massive global efforts to categorize it such 
as the Human Microbiome Project and the Earth Microbiome Project, remind 
me in many ways of the excitement and effort poured into the Human Genome 
Project which in the end taught us relatively little about specific human dis-
eases but opened up a Pandora’s box of ever new questions to be addressed. 
While we hope that some clarion concepts may arise from such reductionist 
approaches to the microbiome, we may find ourselves in the same situation, 
facing an ever increasing and complex set of questions to address if we are to 
move forward. To do so I urge us all to think expansively and consider how 
our microbiome interacts with other networks such as our food supply, our 
environment, and our society.
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So with these humbling caveats which hopefully remind us of our small 
vantage point in our complex world I welcome you to The Microbiome in 
Rheumatic Diseases and Infection.

 Leonard H. Calabrese
Department of Rheumatic and Immunologic Diseases 

College of Medicine of Case Western Reserve University 
Cleveland, OH

USA
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RA Rheumatoid arthritis

 Past: Surprising Insights into 
Today’s Microbial World

All disease starts in the gut.—Attributed to 
Hippocrates

In the 1670s, Antony van Leeuwenhoek was 
the first to describe the presence of bacteria, which 
he described as “animalcules of the most minute 
size which moved themselves about very energeti-
cally [1].” Very little progress was made toward 
identifying or characterizing bacteria over the next 
two centuries. Infectious agents had not, it appears, 
captured the attention of the scientific community 
until Louis Pasteur promoted the concept that 
germs can cause transmissible disease, and Pasteur 

as well as Robert Koch further contributed to the 
field by developing techniques to culture bacteria 
[2]. As reviewed in 1911 [1], in the 1870s, two 
independent groups detected the presence of bac-
teria in stool. However, much of the work at the 
time, quite understandably, was focused on isola-
tion of specific organisms associated with devas-
tating diseases. Along those lines, there were some 
major discoveries at the time, including discovery 
of the bacteria causing anthrax in the blood of a 
dead animal accompanied by the demonstration 
that the disease could be transmitted through injec-
tion of the blood into a healthy animal as well as 
isolation and identification of the bacteria causing 
such diseases as tuberculosis, bacterial dysentery, 
and cholera [1]. Of note, the investigator who dis-
covered both Mycobacterium tuberculosis in 1882 
and Vibrio cholerae in 1884, Robert Koch, is still 
known today for his work proving pathogenicity 
of these bacteria.

Interest in the intestinal microbiota as a 
whole did not emerge until early in the twentieth 
century. Elie Metchnikoff had a rather dismal 
view of the microbiota, fearing that it released 
toxins into the systemic circulation that pro-
duced senility, and he therefore advocated alter-
ing the colonic microbiota [3]. An extreme 
method of doing so, which gained some attrac-
tion in the early twentieth century, was colec-
tomy. There were some adherents to this belief, 
including Dr. Arbuthnot Lane, who performed 
colectomy or colonic bypass for a variety of 
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indications [4]. By the 1920s, this procedure 
had fallen out of favor [3].

A more nuanced view of the intestinal micro-
biota was offered by Arthur Kendall, who hypoth-
esized that they were typically benign, unless the 
host is colonized with specific pathogenic agents 
[1]. That the intestinal microbiota was essential 
for the health of the host was initially demon-
strated in 1915, through studies on germ-free 
chicks, which showed poor development of the 
germ-free animals starting at 10 days of life [5]. 
These observations resulted in the conclusion 
that “man has a bacterial population in his intes-
tinal tract; that under normal conditions the 
organisms in the intestinal tract are fairly charac-
teristic and constant; normally they are harmless; 
[and] they may be protective [5].”

In addition to work in germ-free animals, sev-
eral further lines of current research into the 
microbiota had their start 100 years ago. One of 
them is the functional capacity of intestinal bacte-
ria, which today is studied through such tools as 
shotgun sequencing of microbial DNA and mass 
spectroscopy of fecal and plasma metabolites. 
Ford initially noted that bacteria differ in their 
ability to metabolize carbohydrates and proteins, 
characterizing bacteria into two categories: fer-
menters (carbohydrates metabolizers) and putrifi-
ers (protein metabolizers) [6]. Kendall extended 
these findings, observing that “Food largely deter-
mines the type of intestinal bacteria [1].” 
Specifically, diets rich in carbohydrates resulted 
in the generation of bacteria with increased capac-
ity to metabolize carbohydrates. Today, it is well 
recognized that fiber-rich diets result in increased 
abundance of bacteria capable of metabolizing 
complex carbohydrates [7]. While carbohydrate 
and protein metabolism were the focus of atten-
tion in the first two decades of the twentieth cen-
tury, by mid-century, the microbial effects on 
multiple other endogenous substances were stud-
ied, including B-complex vitamins [8–10], vita-
min C [11], and cholesterol [12].

Another area of active interest today that had 
its roots 100 years ago is interest in treating dis-
ease through alterations in the intestinal micro-
biota. While today’s efforts, as will be seen 
throughout this textbook, focus on the treatment 

of chronic inflammatory diseases, interest in the 
pre-antibiotic era was in the management of 
infectious diseases. As discussed above, colec-
tomy was an extreme method of altering the 
intestinal microbiota, but not the only one. Diet 
has long been recognized as a very effective 
means of doing so, beginning with observations 
from 1911 that bottle-fed and breast-fed infants 
had substantially different microbial populations, 
with these studies even showing increased 
“homogeneity” of the intestinal microbiota in 
bottle-fed infants [1]. These observations are a 
precursor to recent findings showing decreased 
alpha diversity in bottle-fed compared to nursed 
infants [13]. Torrey as well noted that diet 
strongly influenced the contents of the microbi-
ota, writing “It has been my experience that the 
intestinal flora of dogs reacts very promptly and 
with great uniformity to changes in diet [14].” 
Kendall proposed using simple sugars to alter the 
microbiota as a therapeutic tool for bacterial dys-
entery, thus in effect introducing the first instance 
of a therapeutic prebiotic [1]. Lane followed ther-
apeutic colectomies in the first decades of the 
twentieth century with introduction of pure cul-
tures of bacteria, first Lactobacillus bulgaricus 
and later Lactobacillus acidophilus, an early use 
of probiotics [3]. In perhaps the first published 
fecal microbial transplant, Dalton transplanted 
Escherichia coli from a healthy subject to a child 
undergoing antibiotic therapy for meningitis, 
reporting that rectal but not oral administration of 
the organism resulted in successful uptake and 
may have contributed to resolution of the illness 
[15]. In 1955, Winkelstein evaluated Lactobacillus 
acidophilus as a therapeutic agent in 53 subjects 
with a variety of intestinal disorders, including 
ulcerative colitis, reporting mixed results [16]. 
For the most part, however, interest in probiotics 
remained low until the 1990s [3].

Loss of interest in probiotic therapy as a tool 
to alter the microbiota may have been due to the 
development of antibiotics, with penicillin intro-
duced in 1928 and many others to follow. 
Improved public health measures in developed 
nations, including vaccinations and improved 
hygiene, likely also dampened enthusiasm in 
research into microbial-based therapy of intestinal 
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infections. In any event, the widespread use of 
antibiotics spurred interest in the 1940s and 
1950s on the effect of these therapies on the con-
tents of the intestinal microbiota [17–20] and 
subsequently on the development of antibiotic 
resistance [21]. Another line of research in that 
era that pertained to antibiotics, which at the time 
was largely of interest to the agricultural field, 
were the effects of antibiotic therapy on the 
growth of livestock. Several studies demonstrated 
that young animals fed antibiotics demonstrated 
increased growth [22–24]. Observations that 
these growth-promoting effects of antibiotics did 
not occur in germ-free animals [25] and were 
associated with increased efficiency of absorp-
tion of dietary fatty acids [26] resulted in the con-
clusion that changes in the fecal microbiota 
mediated the increased weight gain of young ani-
mals treated with antibiotics [26]. Although this 
practice has fallen in disfavor due to concerns of 
transmission of antibiotic-resistant bacterial 
pathogens to humans, interest in the effects of 
antibiotics on growth remains, with a recent 
study showing that early exposure to antibiotics 
may be associated with an increased risk of child-
hood obesity [27].

One final theme that emerged in the 1950s and 
is germane to this textbook is the association of 
the intestinal microbiota with autoimmune dis-
eases, including those not intrinsic to the gastro-
intestinal tract. Perhaps the first such study was 
published by Seneca, who reported increased 
total and coliform bacteria in the feces of 15 
patients with UC as compared to four healthy 
controls [28]. Studies in the 1950s evaluated the 
intestinal microbiota in pediatric celiac disease 
[29] and acne [30]. Subsequent early studies on 
the intestinal microbiota were published in Crohn 
disease in 1969 [31], rheumatoid arthritis (RA) in 
1966 [32], and ankylosing spondylitis (AS) in 
1978 [33].

Ultimately, all of these efforts were limited by 
technology. For 100  years following the resur-
gence of interest in the intestinal microbiota, the 
only tool available to characterize them was cul-
ture, which we know today to be a highly ineffi-
cient means to characterize bacteria. It is often 
cited that only 20% of intestinal bacteria can be 

cultured [34]. Although this number may be 
higher [35], many of these bacteria require spe-
cialized media, and anaerobic culture is also 
technically demanding. In 1977, Carl Woese 
introduced the concept of identifying bacteria 
according to their ribosomal 16S DNA sequence 
[36], and 10 years later he published an immense 
database of bacterial 16S sequences [37]. This 
permitted use of DNA probes to characterize bac-
terial communities, and this technology was used 
in studies of RA [38] and AS [39] to name but 
two. However, the real explosion in microbial 
DNA technology had yet to come.

 Present: “Democratization 
of Metagenomics”

The intestinal tract is a wonderfully perfect incuba-
tor and culture medium combined… It must be 
evident that the direction that this flora takes will 
not be without influence upon the host.—Arthur 
Kendall (1911)

The last 10 years has witnessed an explosion 
of research into the microbiota. A PubMed search 
of microbiome or microbiota identified nearly 
40,000 publications, the vast majority of which 
are under 10–15 years old. This research has been 
enabled by advances not only in sequencing tech-
nology but primarily in computing power; indeed, 
a typical smartphone contains more than 100,000 
times the computing power of those that launched 
the lunar mission in 1969. More recently, even 
the initial sequencing of the Human Genome 
Project costs over $3  billion and took approxi-
mately 13  years, whereas today, the estimated 
cost of whole human exome sequencing is under 
$1000 http://www.genome.gov/sequencingcosts/ 
(accessed December 18, 2017). Due to the lower 
costs, investigators around the world are able to 
contribute to the field, a capacity that Jeff Gordon 
dubbed the “democratization of metagenomics 
[40].” These efforts around the world have been 
tremendously supported by massive centralized 
efforts to catalog the microbiota: the Human 
Microbiome Project in the United States [41] and 
Euro-HIT in Europe [42]. Thanks in no small part 
to these efforts, reference databases contain over 
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1.4 million bacteria and 53 thousand archaea [43] 
as of the end of 2016.

Much of the human work involving the micro-
biome consists of identifying differences in the 
microbiota between patient groups, e.g., those 
with versus without a particular disease. Such 
work is open to criticism that these differences 
are associative, but do not necessarily reflect a 
causal relationship. That is, the inflammatory 
milieu associated with a particular disease, or 
even its treatments, may result in alterations in 
the microbiota that are challenging to control for 
using comparison groups of healthy individuals. 
However, important work in animals and even in 
humans to some extent has shown the power of 
the microbiota to shape the disease, as well as the 
therapeutic potential of alterations of the 
microbiota.

Multiple animal models of inflammatory dis-
ease are attenuated or in some cases accelerated 
when the animals are raised in a germ-free set-
ting, either in a true gnotobiotic facility or 
through treatment with broad-spectrum antibiot-
ics. These include models of RA [44], ulcerative 
colitis [45], and chronic noninfectious osteomy-
elitis [46]. In each of these models, disease was 
highly attenuated in the germ-free state, and, fur-
thermore, Koch’s postulates of disease causation 
were partially established by recurrence of the 
disease when the microbiota were reintroduced 
into the animals.

A striking example of mediation of disease 
through the microbiota is the transfer of the obe-
sity phenotype. Turnbaugh et  al. studied mice 
that were genetically programmed to develop 
obesity based upon mutations in the gene coding 
for the satiety signal leptin [47]. Obese mice had 
increased Firmicutes in their intestines, findings 
typical in the obese state. Impressively, transfer 
of the fecal microbiota to germ-free mice resulted 
in increased weight gain among mice that 
received microbiota from obese as compared to 
lean mice. There were no differences in chow 
consumption, so this difference reflected 
increased energy harvest.

Another example is the HLA-B27 transgenic 
rat model of spondyloarthritis. Typically, trans-
genic rats develop a spontaneous arthritis, orchi-

tis, and colitis. When raised in a sterile 
environment, the rats are protected against arthri-
tis and colitis [48]; however, disease recurs when 
the animals are exposed to a cocktail of bacteria 
that includes Bacteroides vulgatus [49].

Human studies as well demonstrate that the 
microbiota can impact inflammatory diseases. 
One interesting illustration of this came from 
research in infants at risk for type I diabetes mel-
litus based upon HLA types [50]. The investiga-
tors obtained serial fecal specimens from 33 at-risk 
children from birth through age 3  years, finding 
that changes in the contents of the fecal microbiota 
preceded development of clinical disease.

Similarly, a study of adults with newly diag-
nosed RA showed an expansion of a single organ-
ism, Prevotella copri, in 75% of newly diagnosed 
subjects, that was not seen in healthy controls or 
established patients [51]. The pathogenic nature 
of this species was further demonstrated by oral 
gavage of mice, which resulted in colitis.

Finally, the impact of the microbiota on human 
disease is illustrated by therapeutic responses to 
treatment, possibilities that are still in their infancy. 
While antibiotic [52] and probiotic [53] therapy 
have long been a mainstay of treatment of inflam-
matory bowel disease, there has been increasing 
interest in the potential role of fecal microbial 
transplantation [54]. Additionally, it is clear that 
dietary manipulation through the use of exclusive 
enteral nutrition (EEN) can induce remission of 
inflammatory bowel disease (IBD) as effectively 
as can corticosteroids [55, 56], and EEN has also 
been reported to be beneficial in children with 
juvenile idiopathic arthritis [57]. Although dietary 
changes can induce rapid shifts in the microbiome 
[58], it is not clear whether the beneficial effects of 
dietary changes are mediated through the microbi-
ome or some other mechanism. It remains to be 
seen whether microbial manipulation will have 
similar effects in other diseases.

It is not at all surprising that alterations in the 
microbiota can impact inflammatory diseases. 
The microbiota is required for normal develop-
ment of the immune system [59], and the 
 intestinal microbiota in particular represents the 
largest mass of microbial antigen and adjuvant 
that is encountered in life, thus setting the stage 
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for marked effects on systemic and mucosal 
immune systems [60]. Indeed, antibodies directed 
against commensal microbial components are 
present and potentially pathogenic in a variety of 
autoimmune diseases, including IBD [61], spon-
dyloarthritis [62], and RA [63].

Finally, it bears mentioning that certain micro-
biota may also be beneficial. Not only are certain 
bacteria generally considered protective (e.g., 
Faecalibacterium prausnitzii in IBD (Chap. 19)), 
but there is a body of literature that an entire class 
of organisms, helminth parasites, may also be 
protective against allergic or autoimmune dis-
eases. The data in mice were summarized in a 
recent review [64]. Evidence that parasitic infec-
tion may be protective against allergy or autoim-
munity is as follows: (a) A meta-analysis 
determined that current infection with an intestinal 

parasite was associated with reduced risk of aller-
gic sensitization [65]; (b) worldwide rates of mul-
tiple sclerosis and parasitic infestation show an 
inverse correlation [66]; and (c) in an area endemic 
for filarial parasites, patients with RA were sig-
nificantly less likely to be infected as compared to 
healthy controls [67]; an observational study of 
multiple sclerosis patients demonstrated that hel-
minth infection was associated with reduced dis-
ease progression [68]. It does bear mention, 
however, that some studies have shown contradic-
tory data with respect to helminth infection and 
atopic diseases [69–71], and consequently not all 
investigators have been convinced by the epide-
miologic data [72]. Additionally, interventional 
studies of live parasites in a variety of human 
autoimmune disorders have generally shown 
mixed results (Table 1.1).

Table 1.1 Therapeutic trials of parasitic worms

Study Patient population Study design Parasite Outcome
Allergic rhinitis
[79] 100 adults RCT Trichuris 

suis
No improvement in symptoms

[80] 100 adults RCT Trichuris 
suis

No changes in allergic reactivity

Asthma
[81] 30 adults RCT Necator 

americanus 
larvae

No improvement in airway hyperreactivity

[82] 32 adults RCT Necator 
americanus 
larvae

No improvement in airway hyperreactivity

Inflammatory bowel disease
[83] 4 adults with CD 

and 3 with UC
OL, 
uncontrolled

Trichuris 
suis

6/7 achieved remission for at least part of the study 
period

[84] 29 adults with 
CD

OL, 
uncontrolled

Trichuris 
suis

At week 24, 21/29 (72%) responded; 23/29 (79%) met 
criteria for remission

[85] 54 adults with 
UC

RCT Trichuris 
suis

Favorable response seen in 13/30 (43%) in the 
treatment group versus 4/24 (15%) controls (p = 0.04). 
Remission occurred in ≤10% in both groups

[86] 36 adults with 
CD

RCT Trichuris 
suis

Improvements in symptoms seen in placebo and 
treatment groups; no comparisons performed

Multiple sclerosis
[87] 5 treatment- naïve 

adults
OL, 
uncontrolled

Trichuris 
suis

Decrease in number of new MRI lesions from 6.6 to 2; 
no change in self-reported symptoms

[88] 10 adults OL, 
uncontrolled

Trichuris 
suis

Increase in number of new MRI lesions from 6 to 21

[89] 16 treatment- 
naïve adults

OL, 
uncontrolled

Trichuris 
suis

Nonsignificant improvement in MRI lesions; 
self-reported improvement in symptoms in 12/16

CD Crohn disease, MRI magnetic resonance imaging, OL open-label, RCT randomized controlled trial, UC ulcerative 
colitis

1 The Microbiome: Past, Present, and Future



8

It is of particular interest that we have come full 
circle in our understanding that some of the 
chronic rheumatic diseases may have microbial 
causes. Over a century ago, C. Fred Bailey pro-
posed that RA was likely caused by toxins elabo-
rated by microorganisms, which potentially 
resided in the joints, nasopharynx, or gastrointesti-
nal tract [73]. Sulfasalazine was developed as a 
therapeutic agent on the basis of this assumption 
that RA is an infectious disease [74]. Indeed, as 
discussed in the RA chapter (Chap. 15), there have 
been multiple successful trials of antibiotics in 
RA, yet by the late twentieth century, the notion 
that this was an infectious illness was abandoned, 
and the effectiveness of antibiotics was attributed 
to intrinsic anti-inflammatory effects of these 
agents [75]. Yet now, as shall be discussed as well 
in the RA chapter (Chap. 15), there is substantial 
evidence that specific microbes and their associ-
ated inflammatory properties underlie the disease.

 Future: Microbiota-Based 
Therapeutics or Prevention

A lack of knowledge of the normal intestinal bac-
teria and their relations will be a serious handicap 
in recognizing the abnormal bacteria and their rela-
tions… Arthur Kendall (1911)

Much work lies ahead to understand not only 
the contributory role of the microbiota to the dis-
ease but also the extent to which microbial 
manipulation may have therapeutic potential. As 
with any medication, this will require well- 
designed randomized studies to assess safety and 
efficacy. Many rheumatologists are familiar with 
the concept of a “window of opportunity” to treat 
an inflammatory disease. We are also familiar 
with the idea that the disease process begins long 
before the first symptom emerges, as illustrated 
by lupus-associated antibodies being formed 
years before the clinical onset of disease [76]. For 
diseases mediated by the microbiota, the window 
may be long before even the first disease mani-
festation. We will learn in the juvenile idiopathic 
arthritis (JIA) chapter (Chap. 17) of evidence that 
elevated fecal Bacteroides in JIA may reflect not 
intrinsic pathogenicity of this genus but altered 

immune development on account of it. We are 
also learning that early childhood events affect-
ing the gut microbiota may influence the risk not 
only of pediatric autoimmune disease but possi-
bly even adult disease as well. Gordon proposed 
the concept of microbial prevention, such as 
administering probiotics to infants immediately 
after birth, or even to their mothers just before 
delivery [40]. Probiotic studies involving infants 
have shown benefit in reducing the risk of type I 
diabetes [77] and atopy [78]. Thus, the future of 
microbiota-based therapeutics may prove to be as 
much of a public health measure as therapeutic 
measures for individual diseases.
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Abbreviations

CD Clostridium difficile
CD Crohn’s disease
CDI Clostridium difficile infection
DGGE Denaturing gradient gel electrophoresis
FACS Flow cytometry (FCM) fluorescence- 

activated cell sorting (FACS)
FISH Fluorescence in situ hybridization
GC-MS Gas chromatography-mass 

spectrometry
MAR Microautoradiography
OTU Operational taxonomic unit
RTF Reduced transport fluid
SIMS Secondary ion mass spectrometry
SIP Isotope-labeled substrates
TGGE Temperature gradient gel 

electrophoresis
T-RFLP Terminal restriction fragment length 

polymorphism

 Introduction

We live in a world dominated by microbes [1]. In 
fact, various environments, including multicellular 
organisms, are inhabited by a myriad of complex 
and diversified microbial assemblages. The com-
plete set of microorganisms that resides in a given 
habitat is referred to as “microbiota” and combines 
diverse microbial species such as bacteria, viruses, 
and fungi. Through this chapter, we will be mainly 
focusing on the bacterial communities that are 
associated with several human body sites.

 Microbiota Research: From Culture- 
to Molecular-Based Methods

Until early in the twenty-first century, studies of 
microbiota were traditionally addressed using 
culture-dependent methods. Culture of pure 
microbial colonies using selective and diverse 
culture media (solid, semisolid, and liquid), 
which take advantage of the distinctive metabolic 
properties of the microorganisms, has enabled 
isolation, identification, and characterization of 
several microbial species, ultimately defining 
treatments against many pathogenic microbes [2, 
3]. Nowadays, culture methods continue to be an 
approach in exploring microbial diversity [4–7] 
and are central for identifying pathogenic organ-
isms from clinical specimens. However, numerous 
microbial species show fastidious growth 
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requirements which render their isolation and 
identification extremely challenging. In fact, cul-
turable bacteria in laboratory conditions repre-
sent solely a tiny fraction of the entire bacterial 
diversity, and the unculturable species play 
essential roles in community functioning such as 
synthesizing and degrading key components [8]. 
Besides missing the unculturable members of the 
community, differences in growth requirements 
across different species potentially lead to biases 
in describing the relative abundances of the taxa 
within a mixed community. Indeed, bacteria with 
less fastidious growth requirements likely over- 
compete the more challenging species, thus pro-
viding an inaccurate estimation of the real relative 
abundances of the species within a community. 
Fortunately, over the last decades, methods of 
microbiota investigation have tremendously 
improved, allowing deep, detailed, and complete 
characterization of the microbial components in a 
given environment (Table 2.1). Specifically, with 
the introduction of the bacterial 16S rRNA genes 
described by Pace et al. [9] that harbor hypervari-
able and much conserved regions which permit 
the identification and reconstruction of the bacte-
rial phylotypes phylogeny, the strong advance-
ment of molecular-based approaches, and 
sequencing technologies, the field of microbiome 
research has massively expanded and host- 
microbiota interactions became a central interdis-
ciplinary area of research in health and disease.

 High-Throughput Sequencing 
of 16S rRNA Genes and Whole 
Community Profiling

With the aim to identify and quantify the relative 
abundances of microbial species, the 16S rRNA 
genes are amplified, commonly using primers that 
target one or two hypervariable regions such as 
V1–V2, V3–V4, or V6 regions. The primers for 
each sample contain a unique barcode sequence 
which allows merging several samples together in 
one sequencing run. Substantially, PCR products 
are pooled together at identical concentration and 
sequenced using high- throughput sequencing 
technology such as the Illumina platform [10, 11]. 

Of note, primer choice is crucial and might impact 
the detection of certain microbial species and thus 
impact the downstream analyses. Indeed, the abil-
ity to discriminate between diverse species is 
essential in clinical investigations. In this line, 
previous studies reported that the choice of the 
V1–V3 region is valuable in discriminating 
between common skin resident bacteria espe-
cially the Staphylococcus species [12, 13]. Deep 
sequencing of 16S rRNA genes offers phyloge-
netic and quantitative data, including for unknown 
species; however, phylogenetic definition depends 
on available databases, and the technique suffers 
from PCR biases and remains relatively expensive 
and laborious.

Whole community approaches or the so-called 
“omics” are advancing the characterization of 
microbial assemblages by addressing several 
community aspects. The Human Microbiome 
Project Consortium [14] employed metagenomics 
approach, which is based on the massive and par-
allel sequencing of the entire genomes of micro-
bial communities associated with several human 
body sites. This technique takes advantage on 
genomics, sequencing tools, as well as bioinfor-
matics analyses to define the genetic content of all 
community members and infer their functions 
[15]. The study reported higher stability among 
individuals at the level of bacterial metabolic 
pathways, whereas the structural disparities 
assessed via sequencing the 16S rRNA genes 
were substantial. Similarly, Oh et al. [16] applied 
metagenomics technique to the skin microbiota 
and reported that the microbial functional diver-
sity varied along the different skin sites.

While metagenomics reveal the potential func-
tions of the complete collection of microbes, it 
does not define the actual physiological or meta-
bolic status of the community members. 
Metatranscriptomics provide further information 
about the current activity state. In fact, this method 
which requires RNA isolation identifies the rela-
tive expression of genes in a community, without 
characterizing the actual or direct enzymatic 
activity. Recently, Maurice et al. [17] defined the 
active part of gut- associated microbial communi-
ties in human using metatranscriptomics and 
revealed that the gut harbors a distinctive set of 
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active species compared to the present species 
defined on the DNA level. Ultimately, metapro-
teomics provide information about the actual 
enzymatic functions that are expressed in a com-
munity [18]. Erickson et al. [19] took advantage 

of the improvements in protein isolation and prep-
aration techniques reviewed by Xiong et al. [20] 
and combined shotgun metagenomics and meta-
proteomics methods to characterize and identify 
potential functional signatures of human gut 

Table 2.1 Description of various methods employed in microbiota research

Method Description Data provided
Culture Isolation of bacteria on selective culture 

media and growth conditions
Identification and characterization of 
metabolic properties of the bacteria

Direct and high-
throughput sequencing 
of 16S rRNA

Amplification of a hypervariable region 
of the 16S rRNA and massive parallel 
sequencing of the amplicons

Phylogenetic identification and quantification 
of bacteria of also unknown sequences

qPCR Amplification of 16S rRNA with 
fluorescence labeled, primers or probes

Phylogenetic identification and quantification 
of species of known sequences

Cloning of the 16S 
rRNA

Amplification of full-length 16S rRNA 
gene using broad primers, cloning, and 
Sanger sequencing

Phylogenetic identification of bacteria

Microbiota array Amplification of full-length 16S rRNA 
gene with degenerate primers; 
amplicons hybridize to an array that 
contains a set of specific probes

Phylogenetic identification and quantification 
of bacteria species of known sequences

Gram staining Staining of bacteria cells based on the 
composition of the cell wall

Detection, localization, visualization, and 
sorting of bacteria species

Immunofluorescence Binding of an antibody, linked to a 
fluorophore, and a specific bacterial 
antigen, e.g., lipopolysaccharide which 
generates fluorescence signal

Detection, localization, identification, and 
visualization of bacterial structure for 
bacteria of known sequences

Fluorescence in situ 
hybridization (FISH)

Fluorescence-labeled probes target the 
16S rRNA genes of total and specific 
bacteria taxa

Phylogenetic identification, localization, 
visualization, and quantification of microbial 
presence and activity of known sequences

Microautoradiography 
(MAR)

Substrate absorption is quantified using 
radioactive-labeled substrates

Determination of the physiological status of 
a single cell

Temperature gradient 
gel electrophoresis 
(TGGE) and denaturing 
gradient gel 
electrophoresis (DGGE)

Gel separation of 16S rRNA PCR 
products using temperature or chemical 
denaturation

Comparative and quantitative assessment of 
bacterial profiles

Terminal restriction 
fragment length 
polymorphism T/RELP

16S RNA is amplified using 
fluorescence-labeled primers; amplicons 
are digested with restriction enzymes 
and separated by gel electrophoresis

Quantitative  assessment of bacterial profiles

Flow cytometry (FCM) 
fluorescence-activated 
cell sorting (FACS)

Cell sorting based on cell properties 
including metabolic activity, cell 
damage, growth rate, gene content, and 
transcription levels

Definition of cell categories within a 
community based on the chosen sorting 
criteria, e.g., highly active vs. dormant cells

Mass spectrometry Stable isotope labels of bacterial 
components such as peptides

Quantifies the actual metabolic activity 
within a single cell

Whole community 
profiling “omics”

Massive parallel sequencing of whole 
genome, transcriptome within a 
community

Phylogenetic identification, quantification, 
and reconstitution of functions, activity, and 
metabolic properties of the collection of 
microbes within a community

Single-cell omics Whole genome, transcriptome, or 
proteome sequencing of a single cell, 
e.g., single-cell RNA sequencing 
(scRNA-seq)

Definition of gene content, function, activity 
and metabolic status of a single microbial 
cell
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microbiota in the context of Crohn’s disease. This 
pioneering study reported novel differences in 
microbial communities between healthy and dis-
eased individuals that include several genes, pro-
teins, and pathways. An additional technique 
includes metabolomics, which focuses on the 
metabolome, i.e., the entire collection of metabo-
lites such as hormones, and signaling molecules 
which belong to a given sample (e.g., cell, organ-
ism, and community). This method aims to define 
the metabolic profile by identifying, characteriz-
ing, and quantifying the metabolites of interest, as 
well as describing the biochemical pathways of 
metabolites. Antharam et al. [21] investigated the 
contribution of specific gut microbes to fecal 
metabolites in Clostridium difficile-associated gut 
microbiome. The researchers employed gas chro-
matography-mass spectrometry (GC-MS) and 
16S rRNA deep sequencing, to analyze the 
metabolome and microbiome of fecal samples of 
patients suffering from C. difficile infection and 
from healthy controls. This study identified 63 
human gut microbes with cholesterol-reducing 
activities, thus supporting a potential role of 
microbial components in host lipid metabolism. 
Overall, mass spectrometry quantifies the actual 
metabolic activity. This technique combines sta-
ble isotope labels and Raman microspectroscopy 
or secondary ion mass spectrometry (SIMS) [22, 
23]. In addition, nuclear magnetic resonance 
spectroscopy technology is also employed to 
characterize the metabolic profile of the microbial 
communities. Mass spectrometry methods are 
powerful in terms of coverage, sensitivity, and 
quantification to characterize the metabolic prop-
erties of the cells including uncultured microor-
ganisms and associate the structure and function 
in complex microbial assemblages. To date, these 
techniques remain fairly expensive.

In short, whole community approaches are 
focusing on a global characterization of the 
microbial species within a community; nonethe-
less, these techniques remain relatively costly, 
while the process of data analyses is laborious 
and time costly. Of note, annotations of the vari-
ous databases (e.g., reference genomes, tran-
scripts) continue to expand, to improve the 
accuracy of study’s conclusions [24].

 Beyond the 16S rRNA High- 
Throughput Sequencing

While sequencing of the 16S rRNA phylogenetic 
marker revolutionized the field of microbiome 
research, this approach provides a subset of infor-
mation on the microbial assemblages, and addi-
tional techniques are valuable in providing 
supplementary pieces of information on several 
community aspects.

 Quantitative PCR

Real-time PCR is frequently employed to iden-
tify and quantify microbial taxa, while quantifi-
cation is based on the measure of fluorescent 
signals from primers or probes; identification is 
based on the use of specific primers that are com-
monly designed for the 16S rRNA gene [25, 26]. 
The specific primers target various taxonomical 
levels such as genus or species. Real-time PCR is 
sensitive and accurate, yet it is subject to PCR 
biases and targets solely taxa of known sequences. 
It is frequently used to confirm findings obtained 
through deep sequencing of the 16S rRNA gene.

 Cloning of the 16S rRNA Genes

In this technique, 16S rRNA genes are amplified 
using broad-range primers; then PCR products are 
purified and cloned. A high number of colonies are 
randomly picked and processed for Sanger 
sequencing, and phylogenetic identification is per-
formed using a classification database tool [27, 28]. 
This method provides phylogenetic data based on 
the full length of the 16S rRNA gene; however, it 
suffers from PCR and cloning biases and remains 
laborious and relatively expensive.

 Microbiota Array

The microbiota array requires the amplification 
of full-length 16S rRNA gene with degenerate 
primers. PCR products hybridize to an array that 
comprises a set of specific probes whereby the 

S. Ibrahim and M. Belheouane



17

specificity of the probes allows the identification 
of the taxa, while quantification of the bacterial 
taxa is achieved through the assessment of fluo-
rescence signal [29, 30]. Nevertheless, cross 
hybridization is likely to occur, and unknown and 
very low abundant microbes are challenging to 
detect.

 Staining-, Histology-, 
and Microscopy-Based Methods

Spatial localization of microbes is critical in the 
characterization of microbial assemblages. 
Accordingly, Nakatsuji et  al. [31] investigated 
whether microbial species localize in deep sec-
tions of the skin and combined several staining 
techniques. Gram staining was employed to 
visualize and localize the bacterial structure 
across various skin layers. This technique dis-
criminates bacteria based on the chemical and 
physical properties of their cell walls through 
detection of peptidoglycan, a structure present in 
Gram- positive bacteria [32]. Moreover, immu-
nofluorescence was used to target particular bac-
terial structures. This technique is based on the 
specificity of an antibody to its antigen, e.g., 
lipopolysaccharide, whereby the specific bind-
ing triggers fluorescent signal that permits the 
visualization of the target species [33]. These 
techniques allow the detection, localization, and 
visualization of bacterial components and dem-
onstrated that commensal bacteria are also local-
ized in deep layers of the skin. Similarly, 
fluorescence in situ hybridization (FISH), which 
requires RNA isolation and labeled probes with 
fluorescent dyes such as cyanine 3 (Cy3) and/or 
cyanine 5 (Cy5), aims to define, localize, and 
quantify the 16S rRNA gene content. Broad and 
specific probes are employed separately or in 
combination to assess total and specific micro-
bial abundance. Namely, the Eub338 targets the 
16S rRNA of most but not all bacteria and 
defines the total bacterial abundance [34], while 
probes for specific taxa, for instance, Alf968 for 
α-proteobacteria [35] and Bet42a for 
β-proteobacteria [36], allow the detection of 
uniquely these taxa. Cottrell and Kirchman [37] 

quantified the relative abundances of major bac-
terial species inhabiting an estuary, while Earle 
et al. [33] quantified taxa abundances in different 
sections of the mouse gut. Both studies com-
bined FISH and high-resolution microscopy. Of 
note, high-resolution microscopy and image 
analysis permit the description of relevant cell 
properties such as volume and size.

In addition to identifying, localizing, and 
quantifying the relative abundances of distinct 
taxa within a mixed community, FISH can be 
combined with microautoradiography (MAR), a 
technique employed to define the physiological 
state of a single cell. MAR is based on quantify-
ing substrate absorption using radioactive-labeled 
substrates; for example, it can identify cells spe-
cifically uptaking radiolabeled leucine. Thus, 
MAR defines the metabolic state of the cell [38], 
while FISH provides phylogenetic data, and the 
two procedures can be used in tandem to identify 
which bacteria are metabolizing a specific com-
pound of interest. Overall, these techniques are 
sensitive and accurate, though they do not define 
unknown species.

 Electrophoresis-Based Methods

Methods that apply electrophoresis include the 
terminal restriction fragment length polymor-
phism (T-RFLP), which is based on fluorescently 
labeled primers that amplify 16S rRNA genes, 
whereby restriction enzymes digest the amplicons 
and the fragments are separated by gel electro-
phoresis. Sizes of every sample’s terminal frag-
ments are defined via sequencing and fluorescence 
intensity [39]. Similarly, temperature gradient gel 
electrophoresis (TGGE) and denaturing gradient 
gel electrophoresis (DGGE) use either a tempera-
ture or chemical gradient, respectively, to dena-
ture the sample during the migration process on 
an acrylamide gel. At last, sample specific profiles 
are generated during migration [40]. Zoetendal 
et al. [41] compared the composition of the active 
and present bacteria in human fecal samples by 
applying temperature gradient gel electrophoresis 
of 16S rRNA genes. Terminal restriction fragment 
length polymorphism and gradient gel electro-
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phoresis provide only quantitative data, and 
henceforth are outdated methods.

 Flow Cytometry (FCM)

Flow cytometry is a great tool that permits fast 
and simultaneous analysis of millions of cells. 
The microbial cells are held in suspension and 
exposed to a strong source of light, so that fluo-
rescence signals for every single cell are col-
lected and recorded [42]. Flow cytometry sorts 
cells based on different characteristics such as 
size, shape, intracellular content, or membrane 
integrity [17]. For example, cell damage, or 
whether a cell is deceased, can be investigated 
by examining the membrane integrity using 
exclusion dyes (PI, EtBr, TOPRO dyes). 
Furthermore, the enzymatic activity is assessed 
via quantifying the esterase activity, while 
nucleic acid content, to define cell activity lev-
els, is measured using nucleic acid dyes such as 
SYBR Green or SYTO 13. An additional exam-
ple includes substrate usage, which is quantified 
through isotope- labeled substrates (SIP). 
Recently, Peris-Bondia et  al. [43] investigated 
the active fraction of human gut microbiota by 
measuring the nucleic acid content using 
Pyronin-Y, a fluorescent dye for total RNA, to 
sort the cells into categories based on the activity 
levels. A recently developed technique involves 
sorting intestinal bacteria based upon adhesion 
to mucosal IgA, with IgA+ bacteria demonstrat-
ing greater ability to mediate colitis [44]. Flow 
cytometry performs high- throughput analysis, 
yet it does not define the phylogeny or the local-
ization of the microbial cells.

 Single-Cell Approaches

Single-cell approaches are valuable for charac-
terizing various properties of the cell within a 
mixed microbial community. Based on cell sort-
ing, these methods deeply describe intra- and 
intercellular variations of several properties 
including metabolic activity, cell damage, growth 
rate, gene content, and transcripts levels.

Several approaches of single-cell analyses have 
been developed and applied on microbial assem-
blages. These methods, which include whole-
genome sequencing, transcriptomics, proteomics, 
and metabolomics, do not require prior culture and 
thus potentially reveal new genomes of uncultur-
able species [45, 46]. Single-cell analysis was 
applied on an unculturable bacterium inhabiting 
the human oral cavity which belongs to the TM7 
phylum, through which the whole- genome ampli-
fication and sequencing permitted the identifica-
tion of thousands of genes and disclosed several 
microbial functional pathways. Ultimately, the 
collected genetic information likely contributes to 
understanding the culture requirements of this 
bacterium [47]. In the future, these methods will 
continue to improve to achieve deeper cell pheno-
typing, particularly when combinations of these 
analyses are performed within a single cell (e.g., 
genome sequencing, transcriptomics) [48–51].

 Combination of Various Methods 
in Microbiota Studies

While using one method is common in investigat-
ing the microbiota, the approach of integrating 
several methods is also frequently employed. 
Indeed, combination of various methods is advan-
tageous and allows the definition of complemen-
tary pieces of information on diverse community 
aspects and/or confirms each method outcome. 
Shankar et al. [52] characterized the gut microbi-
ota of human patients suffering from C. difficile 
infection (CDI) by combining microbiota array, 
high-throughput Illumina sequencing of the 16S 
rRNA genes, and fluorescence in situ hybridiza-
tion (FISH). Precisely, the microbiota array pro-
vides data on the phylogeny and abundances of 
microbial taxa, while the FISH localizes and also 
identifies the present taxa. Xu et  al. [53] com-
bined RNA sequencing and metabolomics to 
identify the pathogens in a clinical specimen in 
the context of esophageal squamous cell carci-
noma, while Yu et al. [54] combined 16S rRNA 
sequencing and metabolomics to characterize 
association between gut microbial phenotypes 
and depression. On the other hand, previous 
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